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1 preface
Assuming that m objects are placed in a P -dimensional space, let xit be the configure of object i in

the tth dimension, and define the distance separation dij as follows.

dij =

√√√√ P∑
t=1

(xit − xjt)2

Although it is possible to use Minkowski’s general distance as the distance, in this section, for the sake
of simplicity, we restrict ourselves to the Euclidean distance.

For the dissimilarity sij of the data calculated from this coordinate distribution, we would like to have
a monotonic relationship such that dij > djk when sij > sik. However, it is difficult to match directly, so
we consider the disparity d̂ij as an intermediate variable and take the procedure of finding Xij so that
d̂ij has a completely monotonic relationship with Sij while minimizing the error between d̂ij and dij so
that the error between d̂ij and dij is minimized.

This error is specifically called Stress, and Stressη can be calculated in the following two ways:

η1 =

√√√√ m∑
i=1

m∑
j=1

(dij − d̂ij)2/dij

η2 =

√√√√ m∑
i=1

m∑
j=1

(dij − d̂ij)2/

m∑
i=1

m∑
j=1

(dij − d)2

where

dij =
1

m(m− 1)

m∑
i=1

m∑
j=1
(j 6=i)

dij .

In the following, η2 will be discussed simply as η.
The problem now boils down to finding the gradient to update to the optimal value by sequential

computation, given an initial value of some coordinate xit. This note is a follow-up note on the calcula-
tion of the partial derivative to compute the gradient, following up on the intermediate calculations of
Kruskal[1].
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2 Method of steepest descent
Successively update the value of x as xq+1 = xq + αqdq. where d is the gradient vector and α is the

step size or learning rate. To obtain this gradient vector, differentiate stress η by X.
In computing ∂η

∂X
, let A,B be as follows.

A =
∑
i

∑
j

(dij − d̂ij)
2

B =
∑
i

∑
j

(dij − d)2

This allows η to be expressed as follows.
η = (A/B)1/2

Differentiating η by xit. In the following equation expansion, the following formulas for the derivative of
the composite function and the derivative of the quotient are used, and should be checked.

■Differentiation of composite functions :

{f(g(x))}′ = f ′(g(x)) · g′(x)

■Differentiation of quotient : {
f(x)

g(x)

}′

=

{
f ′(x)g(x)− g′(x)f(x)

{g(x)}2

}
Let’s begin.

∂η

∂xit
=

∂(A/B)1/2

∂xit

=
1

2
(A/B)−1/2 · ∂(A/B)

∂xit

=
1

2

1

η

∂(A/B)

∂xit

=
1

2

1

η

{
∂A
∂xit

B − ∂B
∂xit

A

B2

}

=
1

2

1

η

{
∂A
∂xit

B

B2
−

∂B
∂xit

A

B2

}

=
1

2

1

η

{
∂A

∂xit

1

B
− ∂B

∂xit

A

B2

}
We now check that η can be transformed as follows.

η =

√
A

B
, η2 =

A

B
,
1

B
=

η2

A
,
η2

B
=

A

B2
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The following development follows from this:

=
1

2

1

η

{
∂A

∂xit

1

B
− ∂B

∂xit

A

B2

}

=
1

2

1

η

{
∂A

∂xit

η2

A
− ∂B

∂xit

η2

B

}

=
1

2

(
η

A

∂A

∂xit
− η

B

∂B

∂xit

)

We now turn our attention to ∂A

∂xit
and ∂B

∂xit
.The ∂A

∂xit
is as follows.

∂A

∂xit
=

∂

∂xit

∑
i

∑
j

(dij − d̂ij)
2

Since A is a function of d and d is a function of x, we transform as follows:

∂A

∂xit
=

∂A

∂dij

∂dij
∂xit

.

For ∂A

∂dij
=

∂

∂dij

∑∑
(dij − d̂ij)

2, this is also the derivative of the composite function.

We now consider the derivative of the composite function, f(g(x))′, as f(x) = x2, g(dij) = (dij − d̂ij)
2.

Note that the disparity d̂ij in g(dij) is a distance dij is a quantity that does not depend on the distance
dij . So the derivative here is 1, and the calculation is as follows:

∂A

∂dij
=
∑∑

2(dij − d̂ij) · 1 ·
∂

∂dij
(dij − d̂ij).

If we treat ∂dij as if it were a symbol for a small quantity and expand the equation, we can organize
it as follows.

∂A

∂xit
=

∂A

∂dij

∂dij
∂xit

=
∑∑

2(dij − d̂ij) ·
∂

∂dij
(dij − d̂ij) ·

∂dij
∂xit

=
∑∑

2(dij − d̂ij) ·
∂(dij − d̂ij)

∂xit

Similarly, ∂B

∂xit
can be expanded as follows.

∂B

∂xit
=

∂b

∂dij

∂dij
∂xit

=
∑∑

2(dij − d) · ∂

∂dij
(dij − d) · ∂dij

∂xit

=
∑∑

2(dij − d) · ∂(dij − d)

∂xit
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where ∂d̂ij
∂xit

is the change in disparity for small changes in xit. However, since disparity is a quantity

independent of xit,
∂d̂ij
∂xit

= 0. Additionally, since ∂dij
∂xit

is represented as dij = dji, the changes cancel

each other out when considering all i, j combinations, leading to ∂dij
∂xit

= 0. *1

So far, we have been able to transform the following.

∂A

∂xit
=
∑∑

2(dij − d̂ij)
∂dij
∂xit

∂B

∂xit
=
∑∑

2(dij − d)
∂dij
∂xit

The remainder is the derivative of the distance, ∂dij
xij

. This can be expanded as follows.

∂dij
xij

=
1

∂xit

√√√√ P∑
t=1

(xit − xjt)2

Differentiation of composite functions

=
1

2
(
∑

(xit − xjt)
2)−1/2 ∂

∂xit
(
∑

(xit − xjt)
2)

=
1

2
√∑

(xit − xjt)2
∂

∂xit
(
∑

(xit − xjt)
2)

Since
P∑
t=1

is not relevant except for the t-th dimension

=
1

2
√∑

(xit − xjt)2
2(xit − xjt)

=
xit − xjt

dij

Oh dear. We now have all the elements that differentiate the stress value η. Putting them together,
we can draw the following conclusions.

∂η

∂xit
=

1

2

(
η

A

∂A

∂xit
− η

B

∂B

∂xit

)

=
1

2

η

A
2
∑
i

∑
j

(dij − d̂ij) ·
xit − xjt

dij
− η

B
2
∑
i

∑
j

(dij − d)
xit − xjt

dij

= η
∑
i

∑
j

xit − xjt

dij

(
dij − d̂ij

A
− dij − d

B

)

*1 Takahashi[2] notes that this follows from the monotone regression principle. I believe that the monotone regression
principle is a rule defining the correspondence between distance and disparity, and that these differential values being
zero are not directly relevant to that principle.
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This time we limited ourselves to the Euclidean distance, but when considering Minkowski’s general
distance, it is necessary to consider the sign of the direction of movement, among other factors. Addi-
tionally, note that Kruskal[1] considers a method to fine-tune the step width based on experience*2.
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*2 Takahashi[2] precedes this with 2η, which is probably a typo.
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