library(tidyverse)
# マカーの呪文
old = theme_set(theme_gray(base_family = "HiraKakuProN-W3"))
library(brms)
こういうことがしたい。
read_csv('baseball2019.csv') %>%
# 野手のデータ
dplyr::filter(position!="投手") %>%
# 年俸データを調整
dplyr::mutate(salary = salary/1000) -> baseball_dat10
## Parsed with column specification:
## cols(
## .default = col_double(),
## Name = col_character(),
## team = col_character(),
## position = col_character(),
## bloodType = col_character(),
## throw.by = col_character(),
## batting.by = col_character(),
## birth.place = col_character(),
## birth.day = col_date(format = ""),
## 背番号 = col_character()
## )
## See spec(...) for full column specifications.
baseball_dat10 %>%
# 描画
ggplot(aes(x=安打,y=salary,color=team))+geom_point()+geom_smooth(method="lm",se=F)
## Warning: Removed 125 rows containing non-finite values (stat_smooth).
## Warning: Removed 125 rows containing missing values (geom_point).
つまり,切片や傾きがチームごとによって違うようなモデルです。
切片だけが違うのはランダム切片モデルと言います。
# 年収のデータだから分布は対数正規分布
baseball_dat10 %>%
dplyr::select(salary,安打,team) %>%
na.omit() %>%
brm(salary~安打+(1|team),data=.,family="lognormal") -> result.hlm1
## Compiling the C++ model
## Start sampling
##
## SAMPLING FOR MODEL 'aaf77108a5382a731933bf0a535b896a' NOW (CHAIN 1).
## Chain 1:
## Chain 1: Gradient evaluation took 8.2e-05 seconds
## Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.82 seconds.
## Chain 1: Adjust your expectations accordingly!
## Chain 1:
## Chain 1:
## Chain 1: Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 1: Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 1: Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 1: Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 1: Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 1: Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 1: Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 1: Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 1: Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 1: Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 1: Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 1: Iteration: 2000 / 2000 [100%] (Sampling)
## Chain 1:
## Chain 1: Elapsed Time: 2.86567 seconds (Warm-up)
## Chain 1: 0.490072 seconds (Sampling)
## Chain 1: 3.35574 seconds (Total)
## Chain 1:
##
## SAMPLING FOR MODEL 'aaf77108a5382a731933bf0a535b896a' NOW (CHAIN 2).
## Chain 2:
## Chain 2: Gradient evaluation took 4.9e-05 seconds
## Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.49 seconds.
## Chain 2: Adjust your expectations accordingly!
## Chain 2:
## Chain 2:
## Chain 2: Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 2: Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 2: Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 2: Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 2: Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 2: Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 2: Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 2: Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 2: Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 2: Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 2: Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 2: Iteration: 2000 / 2000 [100%] (Sampling)
## Chain 2:
## Chain 2: Elapsed Time: 2.55437 seconds (Warm-up)
## Chain 2: 0.524891 seconds (Sampling)
## Chain 2: 3.07926 seconds (Total)
## Chain 2:
##
## SAMPLING FOR MODEL 'aaf77108a5382a731933bf0a535b896a' NOW (CHAIN 3).
## Chain 3:
## Chain 3: Gradient evaluation took 6.1e-05 seconds
## Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.61 seconds.
## Chain 3: Adjust your expectations accordingly!
## Chain 3:
## Chain 3:
## Chain 3: Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 3: Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 3: Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 3: Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 3: Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 3: Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 3: Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 3: Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 3: Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 3: Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 3: Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 3: Iteration: 2000 / 2000 [100%] (Sampling)
## Chain 3:
## Chain 3: Elapsed Time: 2.73431 seconds (Warm-up)
## Chain 3: 0.494847 seconds (Sampling)
## Chain 3: 3.22916 seconds (Total)
## Chain 3:
##
## SAMPLING FOR MODEL 'aaf77108a5382a731933bf0a535b896a' NOW (CHAIN 4).
## Chain 4:
## Chain 4: Gradient evaluation took 6.3e-05 seconds
## Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.63 seconds.
## Chain 4: Adjust your expectations accordingly!
## Chain 4:
## Chain 4:
## Chain 4: Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 4: Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 4: Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 4: Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 4: Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 4: Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 4: Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 4: Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 4: Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 4: Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 4: Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 4: Iteration: 2000 / 2000 [100%] (Sampling)
## Chain 4:
## Chain 4: Elapsed Time: 2.70024 seconds (Warm-up)
## Chain 4: 0.486239 seconds (Sampling)
## Chain 4: 3.18648 seconds (Total)
## Chain 4:
result.hlm1
## Family: lognormal
## Links: mu = identity; sigma = identity
## Formula: salary ~ 安打 + (1 | team)
## Data: . (Number of observations: 322)
## Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
## total post-warmup samples = 4000
##
## Group-Level Effects:
## ~team (Number of levels: 12)
## Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
## sd(Intercept) 0.09 0.07 0.00 0.25 2059 1.00
##
## Population-Level Effects:
## Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
## Intercept 0.24 0.08 0.09 0.39 3642 1.00
## 安打 0.02 0.00 0.01 0.02 4239 1.00
##
## Family Specific Parameters:
## Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
## sigma 0.94 0.04 0.87 1.02 5729 1.00
##
## Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample
## is a crude measure of effective sample size, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
plot(result.hlm1)
pp_check(result.hlm1)
## Using 10 posterior samples for ppc type 'dens_overlay' by default.
baseball_dat10 %>%
dplyr::select(salary,安打,team) %>%
na.omit() %>%
# 予測値をデータに追加
cbind(fitted(result.hlm1)) %>%
ggplot(aes(安打, Estimate, color = team)) +
geom_smooth(method = "lm", se = FALSE) +
geom_point(aes(y = salary))
傾きもランダムにします。
# 年収のデータだから分布は対数正規分布
baseball_dat10 %>%
dplyr::select(salary,安打,team) %>%
na.omit() %>%
brm(salary~安打+(1+安打|team),data=.,family="lognormal") -> result.hlm2
## Compiling the C++ model
## Start sampling
##
## SAMPLING FOR MODEL '3de93dbea09e0701426b1dcfaf30bf52' NOW (CHAIN 1).
## Chain 1:
## Chain 1: Gradient evaluation took 0.000176 seconds
## Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 1.76 seconds.
## Chain 1: Adjust your expectations accordingly!
## Chain 1:
## Chain 1:
## Chain 1: Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 1: Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 1: Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 1: Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 1: Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 1: Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 1: Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 1: Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 1: Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 1: Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 1: Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 1: Iteration: 2000 / 2000 [100%] (Sampling)
## Chain 1:
## Chain 1: Elapsed Time: 4.39286 seconds (Warm-up)
## Chain 1: 0.760126 seconds (Sampling)
## Chain 1: 5.15298 seconds (Total)
## Chain 1:
##
## SAMPLING FOR MODEL '3de93dbea09e0701426b1dcfaf30bf52' NOW (CHAIN 2).
## Chain 2:
## Chain 2: Gradient evaluation took 6.4e-05 seconds
## Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.64 seconds.
## Chain 2: Adjust your expectations accordingly!
## Chain 2:
## Chain 2:
## Chain 2: Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 2: Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 2: Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 2: Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 2: Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 2: Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 2: Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 2: Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 2: Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 2: Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 2: Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 2: Iteration: 2000 / 2000 [100%] (Sampling)
## Chain 2:
## Chain 2: Elapsed Time: 4.45157 seconds (Warm-up)
## Chain 2: 1.31639 seconds (Sampling)
## Chain 2: 5.76797 seconds (Total)
## Chain 2:
##
## SAMPLING FOR MODEL '3de93dbea09e0701426b1dcfaf30bf52' NOW (CHAIN 3).
## Chain 3:
## Chain 3: Gradient evaluation took 7.7e-05 seconds
## Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.77 seconds.
## Chain 3: Adjust your expectations accordingly!
## Chain 3:
## Chain 3:
## Chain 3: Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 3: Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 3: Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 3: Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 3: Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 3: Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 3: Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 3: Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 3: Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 3: Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 3: Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 3: Iteration: 2000 / 2000 [100%] (Sampling)
## Chain 3:
## Chain 3: Elapsed Time: 4.12631 seconds (Warm-up)
## Chain 3: 0.771337 seconds (Sampling)
## Chain 3: 4.89765 seconds (Total)
## Chain 3:
##
## SAMPLING FOR MODEL '3de93dbea09e0701426b1dcfaf30bf52' NOW (CHAIN 4).
## Chain 4:
## Chain 4: Gradient evaluation took 7.6e-05 seconds
## Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.76 seconds.
## Chain 4: Adjust your expectations accordingly!
## Chain 4:
## Chain 4:
## Chain 4: Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 4: Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 4: Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 4: Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 4: Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 4: Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 4: Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 4: Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 4: Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 4: Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 4: Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 4: Iteration: 2000 / 2000 [100%] (Sampling)
## Chain 4:
## Chain 4: Elapsed Time: 4.26654 seconds (Warm-up)
## Chain 4: 0.923678 seconds (Sampling)
## Chain 4: 5.19022 seconds (Total)
## Chain 4:
## Warning: There were 1 divergent transitions after warmup. Increasing adapt_delta above 0.8 may help. See
## http://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup
## Warning: Examine the pairs() plot to diagnose sampling problems
result.hlm2
## Warning: There were 1 divergent transitions after warmup. Increasing adapt_delta above 0.8 may help.
## See http://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup
## Family: lognormal
## Links: mu = identity; sigma = identity
## Formula: salary ~ 安打 + (1 + 安打 | team)
## Data: . (Number of observations: 322)
## Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
## total post-warmup samples = 4000
##
## Group-Level Effects:
## ~team (Number of levels: 12)
## Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
## sd(Intercept) 0.09 0.07 0.00 0.28 2378 1.00
## sd(安打) 0.00 0.00 0.00 0.00 1489 1.00
## cor(Intercept,安打) -0.16 0.58 -0.97 0.92 1324 1.00
##
## Population-Level Effects:
## Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
## Intercept 0.24 0.08 0.08 0.39 4184 1.00
## 安打 0.02 0.00 0.01 0.02 3410 1.00
##
## Family Specific Parameters:
## Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
## sigma 0.94 0.04 0.87 1.01 4608 1.00
##
## Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample
## is a crude measure of effective sample size, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
plot(result.hlm2)
pp_check(result.hlm2)
## Using 10 posterior samples for ppc type 'dens_overlay' by default.
baseball_dat10 %>%
dplyr::select(salary,安打,team) %>%
na.omit() %>%
# 予測値をデータに追加
cbind(fitted(result.hlm2)) %>%
ggplot(aes(安打, Estimate, color = team)) +
geom_smooth(method = "lm", se = FALSE) +
geom_point(aes(y = salary))
「とあるスナック菓子を三人のこどもそれぞれに買い与えたが,お菓子の長さに差があると言って喧嘩を始めた。彼らの主張が妥当かどうか検証するために,それぞれの菓子袋から棒状のお菓子10本ずつをサンプリンングし,長さを測定した。三つの菓子袋に含まれるお菓子の長さに差があると言って良いかどうか,統計的に検定しなさい。」
id | group | L |
---|---|---|
1 | A | 9 |
2 | A | 7 |
3 | A | 8 |
4 | A | 5 |
5 | A | 9 |
6 | B | 12 |
7 | B | 10 |
8 | B | 23 |
9 | B | 19 |
10 | B | 16 |
11 | C | 9 |
12 | C | 16 |
13 | C | 16 |
14 | C | 14 |
15 | C | 5 |
##
## [ As-Type Design ]
##
## This output was generated by anovakun 4.8.2 under R version 3.5.2.
## It was executed on Fri Mar 8 17:06:46 2019.
##
##
## << DESCRIPTIVE STATISTICS >>
##
## ---------------------------
## A n Mean S.D.
## ---------------------------
## a1 5 7.6000 1.6733
## a2 5 16.0000 5.2440
## a3 5 12.0000 4.8477
## ---------------------------
##
##
## << ANOVA TABLE >>
##
## -------------------------------------------------------
## Source SS df MS F-ratio p-value
## -------------------------------------------------------
## A 176.5333 2 88.2667 4.9219 0.0275 *
## Error 215.2000 12 17.9333
## -------------------------------------------------------
## Total 391.7333 14 27.9810
## +p < .10, *p < .05, **p < .01, ***p < .001
##
##
## << POST ANALYSES >>
##
## < MULTIPLE COMPARISON for "A" >
##
## == Shaffer's Modified Sequentially Rejective Bonferroni Procedure ==
## == The factor < A > is analysed as independent means. ==
## == Alpha level is 0.05. ==
##
## ---------------------------
## A n Mean S.D.
## ---------------------------
## a1 5 7.6000 1.6733
## a2 5 16.0000 5.2440
## a3 5 12.0000 4.8477
## ---------------------------
##
## ----------------------------------------------------------
## Pair Diff t-value df p adj.p
## ----------------------------------------------------------
## a1-a2 -8.4000 3.1363 12 0.0086 0.0258 a1 < a2 *
## a1-a3 -4.4000 1.6428 12 0.1263 0.1263 a1 = a3
## a2-a3 4.0000 1.4935 12 0.1611 0.1611 a2 = a3
## ----------------------------------------------------------
##
##
## output is over --------------------///
線形モデルの文脈で。
result.anova1 <- brm(L~group,data=dat)
## Compiling the C++ model
## Start sampling
##
## SAMPLING FOR MODEL 'd8d7c25c08bf7eeac588d635c6649298' NOW (CHAIN 1).
## Chain 1:
## Chain 1: Gradient evaluation took 3.2e-05 seconds
## Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.32 seconds.
## Chain 1: Adjust your expectations accordingly!
## Chain 1:
## Chain 1:
## Chain 1: Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 1: Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 1: Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 1: Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 1: Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 1: Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 1: Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 1: Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 1: Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 1: Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 1: Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 1: Iteration: 2000 / 2000 [100%] (Sampling)
## Chain 1:
## Chain 1: Elapsed Time: 0.064369 seconds (Warm-up)
## Chain 1: 0.045909 seconds (Sampling)
## Chain 1: 0.110278 seconds (Total)
## Chain 1:
##
## SAMPLING FOR MODEL 'd8d7c25c08bf7eeac588d635c6649298' NOW (CHAIN 2).
## Chain 2:
## Chain 2: Gradient evaluation took 1.1e-05 seconds
## Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.11 seconds.
## Chain 2: Adjust your expectations accordingly!
## Chain 2:
## Chain 2:
## Chain 2: Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 2: Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 2: Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 2: Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 2: Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 2: Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 2: Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 2: Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 2: Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 2: Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 2: Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 2: Iteration: 2000 / 2000 [100%] (Sampling)
## Chain 2:
## Chain 2: Elapsed Time: 0.063472 seconds (Warm-up)
## Chain 2: 0.045855 seconds (Sampling)
## Chain 2: 0.109327 seconds (Total)
## Chain 2:
##
## SAMPLING FOR MODEL 'd8d7c25c08bf7eeac588d635c6649298' NOW (CHAIN 3).
## Chain 3:
## Chain 3: Gradient evaluation took 1.2e-05 seconds
## Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.12 seconds.
## Chain 3: Adjust your expectations accordingly!
## Chain 3:
## Chain 3:
## Chain 3: Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 3: Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 3: Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 3: Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 3: Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 3: Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 3: Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 3: Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 3: Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 3: Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 3: Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 3: Iteration: 2000 / 2000 [100%] (Sampling)
## Chain 3:
## Chain 3: Elapsed Time: 0.068084 seconds (Warm-up)
## Chain 3: 0.043967 seconds (Sampling)
## Chain 3: 0.112051 seconds (Total)
## Chain 3:
##
## SAMPLING FOR MODEL 'd8d7c25c08bf7eeac588d635c6649298' NOW (CHAIN 4).
## Chain 4:
## Chain 4: Gradient evaluation took 1e-05 seconds
## Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.1 seconds.
## Chain 4: Adjust your expectations accordingly!
## Chain 4:
## Chain 4:
## Chain 4: Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 4: Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 4: Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 4: Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 4: Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 4: Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 4: Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 4: Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 4: Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 4: Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 4: Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 4: Iteration: 2000 / 2000 [100%] (Sampling)
## Chain 4:
## Chain 4: Elapsed Time: 0.073345 seconds (Warm-up)
## Chain 4: 0.054849 seconds (Sampling)
## Chain 4: 0.128194 seconds (Total)
## Chain 4:
result.anova1
## Family: gaussian
## Links: mu = identity; sigma = identity
## Formula: L ~ group
## Data: dat (Number of observations: 15)
## Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
## total post-warmup samples = 4000
##
## Population-Level Effects:
## Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
## Intercept 7.56 2.19 3.32 12.00 3028 1.00
## groupB 8.43 3.08 2.29 14.49 3382 1.00
## groupC 4.35 2.99 -1.65 10.48 3125 1.00
##
## Family Specific Parameters:
## Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
## sigma 4.67 1.04 3.21 7.15 2310 1.00
##
## Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample
## is a crude measure of effective sample size, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
plot(marginal_effects(result.anova1))
##### モデル比較
result.anova1.null <- brm(L~1,data=dat)
## Compiling the C++ model
## Start sampling
##
## SAMPLING FOR MODEL '65e149dd8c76fca577ab92d97eef3fd8' NOW (CHAIN 1).
## Chain 1:
## Chain 1: Gradient evaluation took 1.9e-05 seconds
## Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.19 seconds.
## Chain 1: Adjust your expectations accordingly!
## Chain 1:
## Chain 1:
## Chain 1: Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 1: Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 1: Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 1: Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 1: Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 1: Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 1: Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 1: Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 1: Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 1: Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 1: Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 1: Iteration: 2000 / 2000 [100%] (Sampling)
## Chain 1:
## Chain 1: Elapsed Time: 0.030212 seconds (Warm-up)
## Chain 1: 0.037674 seconds (Sampling)
## Chain 1: 0.067886 seconds (Total)
## Chain 1:
##
## SAMPLING FOR MODEL '65e149dd8c76fca577ab92d97eef3fd8' NOW (CHAIN 2).
## Chain 2:
## Chain 2: Gradient evaluation took 9e-06 seconds
## Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.09 seconds.
## Chain 2: Adjust your expectations accordingly!
## Chain 2:
## Chain 2:
## Chain 2: Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 2: Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 2: Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 2: Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 2: Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 2: Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 2: Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 2: Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 2: Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 2: Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 2: Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 2: Iteration: 2000 / 2000 [100%] (Sampling)
## Chain 2:
## Chain 2: Elapsed Time: 0.031314 seconds (Warm-up)
## Chain 2: 0.027261 seconds (Sampling)
## Chain 2: 0.058575 seconds (Total)
## Chain 2:
##
## SAMPLING FOR MODEL '65e149dd8c76fca577ab92d97eef3fd8' NOW (CHAIN 3).
## Chain 3:
## Chain 3: Gradient evaluation took 9e-06 seconds
## Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.09 seconds.
## Chain 3: Adjust your expectations accordingly!
## Chain 3:
## Chain 3:
## Chain 3: Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 3: Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 3: Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 3: Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 3: Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 3: Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 3: Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 3: Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 3: Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 3: Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 3: Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 3: Iteration: 2000 / 2000 [100%] (Sampling)
## Chain 3:
## Chain 3: Elapsed Time: 0.031735 seconds (Warm-up)
## Chain 3: 0.027487 seconds (Sampling)
## Chain 3: 0.059222 seconds (Total)
## Chain 3:
##
## SAMPLING FOR MODEL '65e149dd8c76fca577ab92d97eef3fd8' NOW (CHAIN 4).
## Chain 4:
## Chain 4: Gradient evaluation took 7e-06 seconds
## Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.07 seconds.
## Chain 4: Adjust your expectations accordingly!
## Chain 4:
## Chain 4:
## Chain 4: Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 4: Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 4: Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 4: Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 4: Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 4: Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 4: Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 4: Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 4: Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 4: Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 4: Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 4: Iteration: 2000 / 2000 [100%] (Sampling)
## Chain 4:
## Chain 4: Elapsed Time: 0.029459 seconds (Warm-up)
## Chain 4: 0.026404 seconds (Sampling)
## Chain 4: 0.055863 seconds (Total)
## Chain 4:
result.anova1.null
## Family: gaussian
## Links: mu = identity; sigma = identity
## Formula: L ~ 1
## Data: dat (Number of observations: 15)
## Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
## total post-warmup samples = 4000
##
## Population-Level Effects:
## Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
## Intercept 11.79 1.45 8.89 14.62 2633 1.00
##
## Family Specific Parameters:
## Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
## sigma 5.70 1.15 4.01 8.33 2515 1.00
##
## Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample
## is a crude measure of effective sample size, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
# モデル比較
brms::WAIC(result.anova1,result.anova1.null)
## WAIC SE
## result.anova1 90.83 4.28
## result.anova1.null 95.32 4.99
## result.anova1 - result.anova1.null -4.49 4.17
内要因のデータは,個人で階層化されてるモデルと同じこと。
「自分の学級で前期,中期,後期に学力テストを行った。三回の学力テストは異なる設問だが難易度は同じぐらいであったとする。三つの時期で学力に違いがあると言って良いか,統計的に検定しなさい。」
##
## [ sA-Type Design ]
##
## This output was generated by anovakun 4.8.2 under R version 3.5.2.
## It was executed on Fri Mar 8 17:08:24 2019.
##
##
## << DESCRIPTIVE STATISTICS >>
##
## ------------------------------
## key n Mean S.D.
## ------------------------------
## Time1 10 59.8000 7.3756
## Time2 10 67.5000 8.0450
## Time3 10 79.8000 4.4920
## ------------------------------
##
##
## << SPHERICITY INDICES >>
##
## == Mendoza's Multisample Sphericity Test and Epsilons ==
##
## -------------------------------------------------------------------------
## Effect Lambda approx.Chi df p LB GG HF CM
## -------------------------------------------------------------------------
## key 0.5333 1.1178 2 0.5718 ns 0.5000 0.8846 1.0851 0.9417
## -------------------------------------------------------------------------
## LB = lower.bound, GG = Greenhouse-Geisser
## HF = Huynh-Feldt-Lecoutre, CM = Chi-Muller
##
##
## << ANOVA TABLE >>
##
## -----------------------------------------------------------------
## Source SS df MS F-ratio p-value p.eta^2
## -----------------------------------------------------------------
## s 559.6333 9 62.1815
## -----------------------------------------------------------------
## key 2035.2667 2 1017.6333 26.3914 0.0000 *** 0.7457
## s x key 694.0667 18 38.5593
## -----------------------------------------------------------------
## Total 3288.9667 29 113.4126
## +p < .10, *p < .05, **p < .01, ***p < .001
##
##
## << POST ANALYSES >>
##
## < MULTIPLE COMPARISON for "key" >
##
## == Shaffer's Modified Sequentially Rejective Bonferroni Procedure ==
## == The factor < key > is analysed as dependent means. ==
## == Alpha level is 0.05. ==
##
## ------------------------------
## key n Mean S.D.
## ------------------------------
## Time1 10 59.8000 7.3756
## Time2 10 67.5000 8.0450
## Time3 10 79.8000 4.4920
## ------------------------------
##
## -----------------------------------------------------------------------
## Pair Diff t-value df p adj.p
## -----------------------------------------------------------------------
## Time1-Time3 -20.0000 8.0611 9 0.0000 0.0001 Time1 < Time3 *
## Time2-Time3 -12.3000 3.7977 9 0.0042 0.0042 Time2 < Time3 *
## Time1-Time2 -7.7000 3.0225 9 0.0144 0.0144 Time1 < Time2 *
## -----------------------------------------------------------------------
##
##
## output is over --------------------///
線形モデルとして。
result.anova2 <- brm(val~key+(1|ID),data=dat2)
## Compiling the C++ model
## Start sampling
##
## SAMPLING FOR MODEL '0de9cd3fd8b99f21ecd5fa335f74897b' NOW (CHAIN 1).
## Chain 1:
## Chain 1: Gradient evaluation took 5.1e-05 seconds
## Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.51 seconds.
## Chain 1: Adjust your expectations accordingly!
## Chain 1:
## Chain 1:
## Chain 1: Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 1: Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 1: Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 1: Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 1: Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 1: Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 1: Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 1: Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 1: Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 1: Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 1: Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 1: Iteration: 2000 / 2000 [100%] (Sampling)
## Chain 1:
## Chain 1: Elapsed Time: 0.214928 seconds (Warm-up)
## Chain 1: 0.163653 seconds (Sampling)
## Chain 1: 0.378581 seconds (Total)
## Chain 1:
##
## SAMPLING FOR MODEL '0de9cd3fd8b99f21ecd5fa335f74897b' NOW (CHAIN 2).
## Chain 2:
## Chain 2: Gradient evaluation took 1.9e-05 seconds
## Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.19 seconds.
## Chain 2: Adjust your expectations accordingly!
## Chain 2:
## Chain 2:
## Chain 2: Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 2: Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 2: Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 2: Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 2: Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 2: Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 2: Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 2: Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 2: Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 2: Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 2: Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 2: Iteration: 2000 / 2000 [100%] (Sampling)
## Chain 2:
## Chain 2: Elapsed Time: 0.215893 seconds (Warm-up)
## Chain 2: 0.168583 seconds (Sampling)
## Chain 2: 0.384476 seconds (Total)
## Chain 2:
##
## SAMPLING FOR MODEL '0de9cd3fd8b99f21ecd5fa335f74897b' NOW (CHAIN 3).
## Chain 3:
## Chain 3: Gradient evaluation took 2e-05 seconds
## Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.2 seconds.
## Chain 3: Adjust your expectations accordingly!
## Chain 3:
## Chain 3:
## Chain 3: Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 3: Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 3: Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 3: Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 3: Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 3: Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 3: Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 3: Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 3: Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 3: Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 3: Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 3: Iteration: 2000 / 2000 [100%] (Sampling)
## Chain 3:
## Chain 3: Elapsed Time: 0.229098 seconds (Warm-up)
## Chain 3: 0.171995 seconds (Sampling)
## Chain 3: 0.401093 seconds (Total)
## Chain 3:
##
## SAMPLING FOR MODEL '0de9cd3fd8b99f21ecd5fa335f74897b' NOW (CHAIN 4).
## Chain 4:
## Chain 4: Gradient evaluation took 1.9e-05 seconds
## Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.19 seconds.
## Chain 4: Adjust your expectations accordingly!
## Chain 4:
## Chain 4:
## Chain 4: Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 4: Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 4: Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 4: Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 4: Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 4: Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 4: Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 4: Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 4: Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 4: Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 4: Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 4: Iteration: 2000 / 2000 [100%] (Sampling)
## Chain 4:
## Chain 4: Elapsed Time: 0.244533 seconds (Warm-up)
## Chain 4: 0.164979 seconds (Sampling)
## Chain 4: 0.409512 seconds (Total)
## Chain 4:
result.anova2
## Family: gaussian
## Links: mu = identity; sigma = identity
## Formula: val ~ key + (1 | ID)
## Data: dat2 (Number of observations: 30)
## Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
## total post-warmup samples = 4000
##
## Group-Level Effects:
## ~ID (Number of levels: 10)
## Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
## sd(Intercept) 3.12 1.91 0.22 7.46 1200 1.00
##
## Population-Level Effects:
## Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
## Intercept 59.80 2.43 54.88 64.59 2505 1.00
## keyTime2 7.76 2.97 2.07 13.74 3308 1.00
## keyTime3 20.07 2.97 14.23 26.05 3202 1.00
##
## Family Specific Parameters:
## Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
## sigma 6.53 1.03 4.79 8.82 2368 1.00
##
## Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample
## is a crude measure of effective sample size, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
plot(marginal_effects(result.anova2))
ggplot(dat2,aes(x=key,y=val,color=ID,group=ID))+geom_point()+
geom_smooth(method="lm",se=F)
「ある学校では二種類のテキストを使って,どちらが成績に良い影響を与えるか検証した。テキストはA1,A2の二種類であり,成績は前後の二回で比較する。5人ずつの学級で検証した。テキストの効果,成績の上昇はあると言って良いか統計的に検定せよ」
ID | Text | pre | post |
---|---|---|---|
1 | A1 | 78 | 45 |
2 | A1 | 76 | 47 |
3 | A1 | 72 | 31 |
4 | A1 | 61 | 36 |
5 | A1 | 69 | 44 |
6 | A2 | 24 | 60 |
7 | A2 | 44 | 86 |
8 | A2 | 29 | 58 |
9 | A2 | 24 | 60 |
10 | A2 | 37 | 68 |
##
## [ AsB-Type Design ]
##
## This output was generated by anovakun 4.8.2 under R version 3.5.2.
## It was executed on Fri Mar 8 17:09:17 2019.
##
##
## << DESCRIPTIVE STATISTICS >>
##
## --------------------------------
## A B n Mean S.D.
## --------------------------------
## a1 b1 5 71.2000 6.6858
## a1 b2 5 40.6000 6.8044
## a2 b1 5 31.6000 8.7350
## a2 b2 5 66.4000 11.6103
## --------------------------------
##
##
## << SPHERICITY INDICES >>
##
## == Mendoza's Multisample Sphericity Test and Epsilons ==
##
## -------------------------------------------------------------------------
## Effect Lambda approx.Chi df p LB GG HF CM
## -------------------------------------------------------------------------
## B 0.8586 0.2668 1 0.6055 ns 1.0000 1.0000 1.0000 1.0000
## -------------------------------------------------------------------------
## LB = lower.bound, GG = Greenhouse-Geisser
## HF = Huynh-Feldt-Lecoutre, CM = Chi-Muller
##
##
## << ANOVA TABLE >>
##
## ---------------------------------------------------------------
## Source SS df MS F-ratio p-value
## ---------------------------------------------------------------
## A 238.0500 1 238.0500 1.7841 0.2184 ns
## s x A 1067.4000 8 133.4250
## ---------------------------------------------------------------
## B 22.0500 1 22.0500 1.2511 0.2958 ns
## A x B 5346.4500 1 5346.4500 303.3447 0.0000 ***
## s x A x B 141.0000 8 17.6250
## ---------------------------------------------------------------
## Total 6814.9500 19 358.6816
## +p < .10, *p < .05, **p < .01, ***p < .001
##
##
## << POST ANALYSES >>
##
## < SIMPLE EFFECTS for "A x B" INTERACTION >
##
## -----------------------------------------------------------------------
## Effect Lambda approx.Chi df p LB GG HF CM
## -----------------------------------------------------------------------
## B at a1 1.0000 -0.0000 0 1.0000 1.0000 1.0000 1.0000
## B at a2 1.0000 -0.0000 0 1.0000 1.0000 1.0000 1.0000
## -----------------------------------------------------------------------
## LB = lower.bound, GG = Greenhouse-Geisser
## HF = Huynh-Feldt-Lecoutre, CM = Chi-Muller
##
## -----------------------------------------------------------------
## Source SS df MS F-ratio p-value
## -----------------------------------------------------------------
## A at b1 3920.4000 1 3920.4000 64.8000 0.0000 ***
## Er at b1 484.0000 8 60.5000
## -----------------------------------------------------------------
## A at b2 1664.1000 1 1664.1000 18.3777 0.0027 **
## Er at b2 724.4000 8 90.5500
## -----------------------------------------------------------------
## B at a1 2340.9000 1 2340.9000 104.5045 0.0005 ***
## s x B at a1 89.6000 4 22.4000
## -----------------------------------------------------------------
## B at a2 3027.6000 1 3027.6000 235.6109 0.0001 ***
## s x B at a2 51.4000 4 12.8500
## -----------------------------------------------------------------
## +p < .10, *p < .05, **p < .01, ***p < .001
##
## output is over --------------------///
線形モデルとして。
dat %>%
tidyr::gather(key,val,-ID,-Text,factor_key=TRUE) -> dat3
result.anova3 <- brm(val~Text*key + (1|ID),data=dat3)
## Compiling the C++ model
## Start sampling
##
## SAMPLING FOR MODEL 'be967cbea7bb3bc2f2e9f7b9c0e66a66' NOW (CHAIN 1).
## Chain 1:
## Chain 1: Gradient evaluation took 5.3e-05 seconds
## Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.53 seconds.
## Chain 1: Adjust your expectations accordingly!
## Chain 1:
## Chain 1:
## Chain 1: Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 1: Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 1: Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 1: Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 1: Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 1: Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 1: Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 1: Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 1: Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 1: Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 1: Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 1: Iteration: 2000 / 2000 [100%] (Sampling)
## Chain 1:
## Chain 1: Elapsed Time: 0.314932 seconds (Warm-up)
## Chain 1: 0.167302 seconds (Sampling)
## Chain 1: 0.482234 seconds (Total)
## Chain 1:
##
## SAMPLING FOR MODEL 'be967cbea7bb3bc2f2e9f7b9c0e66a66' NOW (CHAIN 2).
## Chain 2:
## Chain 2: Gradient evaluation took 2.3e-05 seconds
## Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.23 seconds.
## Chain 2: Adjust your expectations accordingly!
## Chain 2:
## Chain 2:
## Chain 2: Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 2: Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 2: Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 2: Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 2: Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 2: Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 2: Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 2: Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 2: Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 2: Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 2: Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 2: Iteration: 2000 / 2000 [100%] (Sampling)
## Chain 2:
## Chain 2: Elapsed Time: 0.326233 seconds (Warm-up)
## Chain 2: 0.253915 seconds (Sampling)
## Chain 2: 0.580148 seconds (Total)
## Chain 2:
##
## SAMPLING FOR MODEL 'be967cbea7bb3bc2f2e9f7b9c0e66a66' NOW (CHAIN 3).
## Chain 3:
## Chain 3: Gradient evaluation took 3.4e-05 seconds
## Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.34 seconds.
## Chain 3: Adjust your expectations accordingly!
## Chain 3:
## Chain 3:
## Chain 3: Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 3: Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 3: Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 3: Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 3: Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 3: Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 3: Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 3: Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 3: Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 3: Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 3: Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 3: Iteration: 2000 / 2000 [100%] (Sampling)
## Chain 3:
## Chain 3: Elapsed Time: 0.351362 seconds (Warm-up)
## Chain 3: 0.237883 seconds (Sampling)
## Chain 3: 0.589245 seconds (Total)
## Chain 3:
##
## SAMPLING FOR MODEL 'be967cbea7bb3bc2f2e9f7b9c0e66a66' NOW (CHAIN 4).
## Chain 4:
## Chain 4: Gradient evaluation took 2.6e-05 seconds
## Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.26 seconds.
## Chain 4: Adjust your expectations accordingly!
## Chain 4:
## Chain 4:
## Chain 4: Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 4: Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 4: Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 4: Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 4: Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 4: Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 4: Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 4: Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 4: Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 4: Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 4: Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 4: Iteration: 2000 / 2000 [100%] (Sampling)
## Chain 4:
## Chain 4: Elapsed Time: 0.326563 seconds (Warm-up)
## Chain 4: 0.249589 seconds (Sampling)
## Chain 4: 0.576152 seconds (Total)
## Chain 4:
## Warning: There were 3 divergent transitions after warmup. Increasing adapt_delta above 0.8 may help. See
## http://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup
## Warning: Examine the pairs() plot to diagnose sampling problems
result.anova3
## Warning: There were 3 divergent transitions after warmup. Increasing adapt_delta above 0.8 may help.
## See http://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup
## Family: gaussian
## Links: mu = identity; sigma = identity
## Formula: val ~ Text * key + (1 | ID)
## Data: dat3 (Number of observations: 20)
## Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
## total post-warmup samples = 4000
##
## Group-Level Effects:
## ~ID (Number of levels: 10)
## Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
## sd(Intercept) 8.30 3.17 2.92 15.50 698 1.00
##
## Population-Level Effects:
## Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
## Intercept 71.20 4.74 61.92 80.47 1217 1.00
## TextA2 -39.71 6.79 -53.01 -26.81 1279 1.00
## keypost -30.59 3.49 -37.72 -23.36 2409 1.00
## TextA2:keypost 65.30 5.10 54.42 75.73 2386 1.00
##
## Family Specific Parameters:
## Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
## sigma 5.28 1.75 3.00 9.83 624 1.00
##
## Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample
## is a crude measure of effective sample size, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
plot(marginal_effects(result.anova3,effects="key"))
plot(marginal_effects(result.anova3,effects="Text"))
plot(marginal_effects(result.anova3,effects="key:Text"))
こちらからデータをダウンロードしてください(出典;https://www1.doshisha.ac.jp/~mjin/R/Chap_25/25.html)。
library(psych)
##
## Attaching package: 'psych'
## The following object is masked from 'package:brms':
##
## cs
## The following objects are masked from 'package:ggplot2':
##
## %+%, alpha
Items <- c("円打点","記号記入","形態照合","名詞比較","図柄照合",
"平面図判断","計算","語彙","立体図判断","文章完成","算数応用")
FA.dat <- read_csv("CATB50.csv") %>% dplyr::select(-X1) %>% setNames(Items)
## Warning: Missing column names filled in: 'X1' [1]
## Parsed with column specification:
## cols(
## X1 = col_double(),
## A = col_double(),
## B = col_double(),
## C = col_double(),
## D = col_double(),
## E = col_double(),
## F = col_double(),
## G = col_double(),
## H = col_double(),
## I = col_double(),
## J = col_double(),
## K = col_double()
## )
cor(FA.dat) %>% print(digits=2)
## 円打点 記号記入 形態照合 名詞比較 図柄照合 平面図判断 計算
## 円打点 1.000 0.387 0.1781 0.046 0.070 0.139 0.0719
## 記号記入 0.387 1.000 0.1476 0.255 0.084 0.274 0.2823
## 形態照合 0.178 0.148 1.0000 0.306 0.424 0.446 -0.0095
## 名詞比較 0.046 0.255 0.3056 1.000 0.479 0.412 0.2328
## 図柄照合 0.070 0.084 0.4235 0.479 1.000 0.397 -0.1914
## 平面図判断 0.139 0.274 0.4456 0.412 0.397 1.000 -0.0539
## 計算 0.072 0.282 -0.0095 0.233 -0.191 -0.054 1.0000
## 語彙 0.050 0.296 0.3017 0.525 0.372 0.323 0.1919
## 立体図判断 0.010 0.223 0.2834 0.409 0.276 0.612 0.0746
## 文章完成 -0.173 0.078 0.2075 0.579 0.413 0.246 0.0545
## 算数応用 -0.147 0.173 0.0470 0.411 0.056 0.265 0.3977
## 語彙 立体図判断 文章完成 算数応用
## 円打点 0.05 0.010 -0.173 -0.147
## 記号記入 0.30 0.223 0.078 0.173
## 形態照合 0.30 0.283 0.207 0.047
## 名詞比較 0.52 0.409 0.579 0.411
## 図柄照合 0.37 0.276 0.413 0.056
## 平面図判断 0.32 0.612 0.246 0.265
## 計算 0.19 0.075 0.055 0.398
## 語彙 1.00 0.233 0.626 0.405
## 立体図判断 0.23 1.000 0.394 0.456
## 文章完成 0.63 0.394 1.000 0.356
## 算数応用 0.41 0.456 0.356 1.000
psych::fa.parallel(FA.dat,fa="fa")
## Parallel analysis suggests that the number of factors = 1 and the number of components = NA
fa.result <- fa(FA.dat,4,rotate='none')
print(fa.result,digits=3)
## Factor Analysis using method = minres
## Call: fa(r = FA.dat, nfactors = 4, rotate = "none")
## Standardized loadings (pattern matrix) based upon correlation matrix
## MR1 MR2 MR3 MR4 h2 u2 com
## 円打点 0.085 -0.278 0.587 0.201 0.470 0.530 1.74
## 記号記入 0.368 0.034 0.548 0.126 0.453 0.547 1.88
## 形態照合 0.458 -0.342 0.069 0.037 0.333 0.667 1.92
## 名詞比較 0.745 0.075 -0.051 0.144 0.584 0.416 1.10
## 図柄照合 0.559 -0.421 -0.219 0.176 0.569 0.431 2.44
## 平面図判断 0.664 -0.343 0.141 -0.354 0.705 0.295 2.21
## 計算 0.196 0.539 0.350 0.075 0.458 0.542 2.07
## 語彙 0.691 0.140 -0.056 0.338 0.615 0.385 1.56
## 立体図判断 0.653 -0.028 0.035 -0.477 0.656 0.344 1.84
## 文章完成 0.683 0.145 -0.403 0.203 0.692 0.308 1.94
## 算数応用 0.544 0.537 0.012 -0.233 0.638 0.362 2.35
##
## MR1 MR2 MR3 MR4
## SS loadings 3.368 1.117 1.010 0.677
## Proportion Var 0.306 0.102 0.092 0.062
## Cumulative Var 0.306 0.408 0.500 0.561
## Proportion Explained 0.546 0.181 0.164 0.110
## Cumulative Proportion 0.546 0.727 0.890 1.000
##
## Mean item complexity = 1.9
## Test of the hypothesis that 4 factors are sufficient.
##
## The degrees of freedom for the null model are 55 and the objective function was 3.895 with Chi Square of 173.329
## The degrees of freedom for the model are 17 and the objective function was 0.275
##
## The root mean square of the residuals (RMSR) is 0.028
## The df corrected root mean square of the residuals is 0.05
##
## The harmonic number of observations is 50 with the empirical chi square 4.252 with prob < 0.999
## The total number of observations was 50 with Likelihood Chi Square = 11.506 with prob < 0.829
##
## Tucker Lewis Index of factoring reliability = 1.1647
## RMSEA index = 0 and the 90 % confidence intervals are 0 0.0788
## BIC = -54.999
## Fit based upon off diagonal values = 0.992
## Measures of factor score adequacy
## MR1 MR2 MR3 MR4
## Correlation of (regression) scores with factors 0.948 0.851 0.825 0.807
## Multiple R square of scores with factors 0.899 0.724 0.680 0.651
## Minimum correlation of possible factor scores 0.799 0.447 0.360 0.303
fa.result <- fa(FA.dat,4,rotate='geominQ')
## Loading required namespace: GPArotation
## Warning in fac(r = r, nfactors = nfactors, n.obs = n.obs, rotate =
## rotate, : I am sorry, to do these rotations requires the GPArotation
## package to be installed
print(fa.result,digits=3,cut=0.3)
## Factor Analysis using method = minres
## Call: fa(r = FA.dat, nfactors = 4, rotate = "geominQ")
## Standardized loadings (pattern matrix) based upon correlation matrix
## MR1 MR2 MR3 MR4 h2 u2 com
## 円打点 0.587 0.470 0.530 1.74
## 記号記入 0.368 0.548 0.453 0.547 1.88
## 形態照合 0.458 -0.342 0.333 0.667 1.92
## 名詞比較 0.745 0.584 0.416 1.10
## 図柄照合 0.559 -0.421 0.569 0.431 2.44
## 平面図判断 0.664 -0.343 -0.354 0.705 0.295 2.21
## 計算 0.539 0.350 0.458 0.542 2.07
## 語彙 0.691 0.338 0.615 0.385 1.56
## 立体図判断 0.653 -0.477 0.656 0.344 1.84
## 文章完成 0.683 -0.403 0.692 0.308 1.94
## 算数応用 0.544 0.537 0.638 0.362 2.35
##
## MR1 MR2 MR3 MR4
## SS loadings 3.368 1.117 1.010 0.677
## Proportion Var 0.306 0.102 0.092 0.062
## Cumulative Var 0.306 0.408 0.500 0.561
## Proportion Explained 0.546 0.181 0.164 0.110
## Cumulative Proportion 0.546 0.727 0.890 1.000
##
## Mean item complexity = 1.9
## Test of the hypothesis that 4 factors are sufficient.
##
## The degrees of freedom for the null model are 55 and the objective function was 3.895 with Chi Square of 173.329
## The degrees of freedom for the model are 17 and the objective function was 0.275
##
## The root mean square of the residuals (RMSR) is 0.028
## The df corrected root mean square of the residuals is 0.05
##
## The harmonic number of observations is 50 with the empirical chi square 4.252 with prob < 0.999
## The total number of observations was 50 with Likelihood Chi Square = 11.506 with prob < 0.829
##
## Tucker Lewis Index of factoring reliability = 1.1647
## RMSEA index = 0 and the 90 % confidence intervals are 0 0.0788
## BIC = -54.999
## Fit based upon off diagonal values = 0.992
## Measures of factor score adequacy
## MR1 MR2 MR3 MR4
## Correlation of (regression) scores with factors 0.948 0.851 0.825 0.807
## Multiple R square of scores with factors 0.899 0.724 0.680 0.651
## Minimum correlation of possible factor scores 0.799 0.447 0.360 0.303
fa.result$loadings %>% as.matrix() %>% c() %>% matrix(ncol=4) %>% data.frame() %>%
rename(FA1=X1,FA2=X2,FA3=X3,FA4=X4) %>%
mutate(items=Items) %>%
tidyr::gather(key,val,-items,factor_key=T) %>%
ggplot(aes(x=items,y=val,fill=items))+geom_bar(stat='identity')+facet_wrap(~key)+
theme(axis.text.x = element_text(angle = 45, hjust = 1))
fa.result$scores %>% as.data.frame %>%
tidyr::gather(key,val,factor_key=TRUE) %>%
mutate(因子=factor(key,labels=c("語彙","空間","計算","運動"))) %>%
ggplot(aes(x=val,fill=因子))+geom_histogram(binwidth=0.2) + facet_wrap(~因子)
こちらからデータをダウンロードしてください。
library(ltm)
## Loading required package: msm
## Loading required package: polycor
##
## Attaching package: 'polycor'
## The following object is masked from 'package:psych':
##
## polyserial
##
## Attaching package: 'ltm'
## The following object is masked from 'package:psych':
##
## factor.scores
dat <- read_csv("YUtest.csv") %>%
dplyr::select(Q4,Q5,Q6,Q7,Q8,Q9,Q10)
## Parsed with column specification:
## cols(
## .default = col_double()
## )
## See spec(...) for full column specifications.
result.ltm1 <- rasch(dat)
summary(result.ltm1)
##
## Call:
## rasch(data = dat)
##
## Model Summary:
## log.Lik AIC BIC
## -51.61251 119.225 127.1909
##
## Coefficients:
## value std.err z.vals
## Dffclt.Q4 -0.2175 0.3397 -0.6402
## Dffclt.Q5 -0.7099 0.3477 -2.0418
## Dffclt.Q6 -0.8839 0.3623 -2.4398
## Dffclt.Q7 -1.8979 0.6007 -3.1594
## Dffclt.Q8 -1.8980 0.6008 -3.1593
## Dffclt.Q9 -0.7100 0.3477 -2.0420
## Dffclt.Q10 -1.5343 0.4698 -3.2658
## Dscrmn 2.6777 0.9014 2.9706
##
## Integration:
## method: Gauss-Hermite
## quadrature points: 21
##
## Optimization:
## Convergence: 0
## max(|grad|): 0.00028
## quasi-Newton: BFGS
plot(result.ltm1,type="ICC",items = c(1,3,5))
plot(result.ltm1,type="IIC",items = c(1,3,5))
plot(result.ltm1,type="IIC",items = 0)
result.ltm2 <- ltm(dat~z1)
summary(result.ltm2)
##
## Call:
## ltm(formula = dat ~ z1)
##
## Model Summary:
## log.Lik AIC BIC
## -49.13463 126.2693 140.2095
##
## Coefficients:
## value std.err z.vals
## Dffclt.Q4 -0.3040 0.2954 -1.0291
## Dffclt.Q5 -0.6871 0.7125 -0.9643
## Dffclt.Q6 -0.8090 0.6888 -1.1746
## Dffclt.Q7 -2.5026 2.2305 -1.1220
## Dffclt.Q8 -8.2500 26.7117 -0.3089
## Dffclt.Q9 -0.7623 0.3072 -2.4812
## Dffclt.Q10 -2.1862 1.4812 -1.4759
## Dscrmn.Q4 3.8676 2.9880 1.2944
## Dscrmn.Q5 22.1274 1736.8954 0.0127
## Dscrmn.Q6 7.5818 41.3155 0.1835
## Dscrmn.Q7 1.6349 2.4491 0.6675
## Dscrmn.Q8 0.3686 1.2518 0.2945
## Dscrmn.Q9 2.8784 1.9777 1.4554
## Dscrmn.Q10 1.3471 1.3926 0.9674
##
## Integration:
## method: Gauss-Hermite
## quadrature points: 21
##
## Optimization:
## Convergence: 0
## max(|grad|): 0.00011
## quasi-Newton: BFGS
plot(result.ltm2,type="ICC",items = c(1,3,5))
plot(result.ltm2,type="IIC",items = c(1,3,5))
plot(result.ltm2,type="IIC",items = 0)
pockemon <- read_csv("pokemon_status.csv") %>%
dplyr::mutate(ID=row.names(.),
name=as.factor(ポケモン名),
type1=as.factor(タイプ1),
type2=as.factor(タイプ2),
property1 = as.factor(通常特性1),
property2 = as.factor(通常特性2),
propertyD = as.factor(夢特性))
## Parsed with column specification:
## cols(
## 図鑑番号 = col_character(),
## ポケモン名 = col_character(),
## タイプ1 = col_character(),
## タイプ2 = col_character(),
## 通常特性1 = col_character(),
## 通常特性2 = col_character(),
## 夢特性 = col_character(),
## HP = col_double(),
## こうげき = col_double(),
## ぼうぎょ = col_double(),
## とくこう = col_double(),
## とくぼう = col_double(),
## すばやさ = col_double(),
## 合計 = col_double()
## )
summary(pockemon)
## 図鑑番号 ポケモン名 タイプ1
## Length:909 Length:909 Length:909
## Class :character Class :character Class :character
## Mode :character Mode :character Mode :character
##
##
##
##
## タイプ2 通常特性1 通常特性2
## Length:909 Length:909 Length:909
## Class :character Class :character Class :character
## Mode :character Mode :character Mode :character
##
##
##
##
## 夢特性 HP こうげき ぼうぎょ
## Length:909 Min. : 1.0 Min. : 5.00 Min. : 5.00
## Class :character 1st Qu.: 50.0 1st Qu.: 55.00 1st Qu.: 50.00
## Mode :character Median : 66.0 Median : 75.00 Median : 70.00
## Mean : 69.5 Mean : 79.59 Mean : 74.24
## 3rd Qu.: 80.0 3rd Qu.:100.00 3rd Qu.: 90.00
## Max. :255.0 Max. :190.00 Max. :230.00
##
## とくこう とくぼう すばやさ 合計
## Min. : 10.00 Min. : 20.00 Min. : 5.00 Min. :175.0
## 1st Qu.: 50.00 1st Qu.: 50.00 1st Qu.: 45.00 1st Qu.:330.0
## Median : 65.00 Median : 70.00 Median : 65.00 Median :455.0
## Mean : 72.84 Mean : 72.23 Mean : 69.19 Mean :436.3
## 3rd Qu.: 95.00 3rd Qu.: 90.00 3rd Qu.: 90.00 3rd Qu.:515.0
## Max. :194.00 Max. :230.00 Max. :600.00 Max. :780.0
## NA's :2
## ID name type1 type2
## Length:909 アーケオス: 1 みず :123 ひこう :109
## Class :character アーケン : 1 ノーマル:110 じめん : 39
## Mode :character アーボ : 1 くさ : 83 エスパー : 36
## アーボック: 1 むし : 78 どく : 35
## アーマルド: 1 エスパー: 64 フェアリー: 35
## アイアント: 1 ほのお : 58 (Other) :233
## (Other) :903 (Other) :393 NA's :422
## property1 property2 propertyD
## ふゆう : 40 がんじょう : 14 ちからずく : 18
## すいすい : 28 おみとおし : 13 テレパシー : 17
## するどいめ : 26 シェルアーマー: 11 ぼうじん : 17
## ようりょくそ: 25 せいしんりょく: 10 きんちょうかん: 16
## プレッシャー: 23 テクニシャン : 10 くだけるよろい: 15
## いかく : 22 (Other) :400 (Other) :646
## (Other) :745 NA's :451 NA's :180